skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Chuanen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA inMedicago truncatulaidentified from salt-treated Medicagotruncatulais important for salinity tolerance. We name the lncRNALAL,LncRNAANTISENSEtoM. truncatulaLIGHT-HARVESTING CHLOROPHYLL A/B BINDING(MtLHCB)genes. LALis an antisense to four consecutiveMtLHCBgenes on chromosome 6. In salt-treatedM. truncatula,LALis suppressed in an early stage but induced later; this pattern is opposite to that of the fourMtLHCBs. Thelalmutants show enhanced salinity tolerance, while overexpressingLALdisrupts this superior tolerance in thelalbackground, which indicates its regulatory role in salinity response. The regulatory role ofLALonMtLHCB1.4is further verified by transient co-expression ofLALandMtLHCB1.4-GFPin tobacco leaves, in which the cleavage ofMtLHCB1.4and production of secondary interfering RNA is identified. This work demonstrates a lncRNA,LAL, functioning as a regulator that fine-tunes salinity tolerance via regulatingMtLHCB1s’ expression inM. truncatula. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class ⅡKNOTTED‐like homeobox (KNOXII) genes in the model leguminous plantMedicago truncatula. Phenotypic and genetic analyses suggest thatMtKNOX4,5are able to repress leaflet formation, whileMtKNOX3,9,10are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ‐mediated CK biosynthesis. Additionally, two boundary genes,FUSED COMPOUND LEAF1(orthologue ofArabidopsisClass MKNOX) andNO APICAL MERISTEM(orthologue ofArabidopsis CUP‐SHAPED COTYLEDON), are necessary for MtKNOX4‐mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves inM. truncatula. 
    more » « less
  4. Abstract Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula. 
    more » « less